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A new definition of the index of the stability region of a canonical system of linear differential equations with periodic coefficients 
is proposed. A simple proof of the Gel'fand-Lidskii theorem [1] on the structure of stability regions is given and a theorem on 
the directional convexity of such regions is proved. It follows from this theorem, in particular, that stability regions of parametric 
oscillations in a system with a sign-definite Hamiltonian are convex with respect to the frequency of parametric perturbation. 
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1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Consider the canonical system 

. : . . , x  .:! 0 o, 1 I .  , xeR 2" (1.1) 

where H(t) = H(t + I)  is a symmetrical piecewise-continuous matrix (a Hamiltonian) of order 2n and 
In is the identity matrix of order n. 

Problems of parametric oscillations and of the dynamic stability of elastic systems, problems of the 
stability of periodic o~:illations of non-linear Hamiltonian systems and many others reduce to Eq. (1.1). 
The fundamentals of the theory of such equations were laid by Lyapunov and Poincart; later, Krein 
and others obtained many profound results (a systematic description of the theory can be found in 
[2, 3]). 

System (1.1) is said to be stable if all its solutions are bounded as t ~ **. Strongly stable systems are 
of practical interest. In such systems, stability is preserved for fairly small perturbations of the matrix 
H(t), without disturbing its symmetry. 

We will present some well-known facts which will be used later. The matrix of the fundamental system 
of solutions of Eq. (1.1) X(t) = [xp(t)]~ satisfies the identity 

X(t)* (iJ)X(t) = C (1.2) 

where C --- [c ]~  is a constant matrix # 
Henceforth we will use the inverse assertion [1]: if a certain matrixX(t) satisfies identity (1.2), then 

X(t) is a solution of Eq. (1.1) with Hamiltonian 

H(t) = JX(t)X -l (t) (1.3) 

Using the classification introduced by Krein [4] the multipliers of Eq. (1.1) can be divided into 
multipliers of the first and second kind. For strong stability it is necessary and suflieient [1, 4], that all 
the multipliers should lie on the unit circle and be definite, i.e. there should not be any identical 
multipliers of different kinds among them. 

In a stable system, the solutions can be represented in the form 

xp(t)= exp(icopt)fp(t), xp+n(t) = x~(t), p = I ..... n (1.4) 

where fp(t) are T-periodic functions, and ict~ = Tqln pp are characteristic factors. Henceforth we will 

tPrik£ Mat. Mekh. Vol. 62, No. 1, pp. 41--48, 1998. 

37 



38 A.A.  Zevin 

assume that 0 < o~ < 2~, pp and pp+~ = p~, (p = 1 . . . . .  n) are multipliers of the first and second kind, 
respectively. 

For solutions (1.4) 

cpk = (xt, (t), i J x  k (t)) = [(exp(itap - ita k )t]((fp (t), i J r  k (t)) (1.5) 

where (a, b) is the scalar product of the vectors a and b. 
Taking into account the periodicity of the functions fq(t) we obtain c~ = 0 when cop # tag. For simple 

multipliers of the first and second kind cpp > 0 and ct,t, < 0 respectively [4]; without loss of generality 
we will assume [ ct,p [ = 2. In the case of an m-fold multiplier, the functions ft,(t) (p = 1 , . . . ,  m) corres- 
ponding to it can be chosen in such a way that the equality Cpk = 0 when p ~ k remains true. 

Assuming fp(t) = up(t) + ivp(t) (p = 1 . . . . .  n), we obtain cpe = 2(Jup(t), vp(t)). Hence, the real functions 
up(t) and vp(t) satisfy the relations 

( J u p , u p ) = O ,  ( J v p , v p ) = 0 ,  ( J u p , v , ) = 0 ,  p # k ;  ( J u p , v p ) = l  (1.6) 

2. THE S T R U C T U R E  OF THE S T A B I L I T Y  R E G I O N S  

In a strongly stable system, on going round the unit circle groups of multipliers of different order 
are encountered in sequence. The multiplier type of such a Hamiltonian can be defined by the set of 
numbers np (p = 1 . . . . .  r), where r is the number of such groups on the upper semicircle, I np [ is 
the number of multipliers in the pth group, n p >  0 and np < 0 for multipliers of the first and second 
kind, respectively and I nl I + - . .  + [ nr [ = n. 

Two strongly stable Hamiltonians Hi( t )  and H2(t) belong to one stability region if a Hamiltonian 
H(t, s) = H( t  + T, s), continuous in s, exists such that H(t,  O) = Hi( t ) ,  H(t ,  1) = H2(t)) and the 
corresponding Eq. (1.1) is strongly stable when s ~ [0, 1]; otherwise Hi( t )  and Hz(t) belong to different 
stability regions. By the Gel'fand-Lidskii theory [1] each stability region is uniquely defined by the 
multiplier type and one integer k (--~ < k < **), called the index of rotation or simply the system index. 

We will put L(t) = [ul( t ) , . .  , ,  un(t), v l ( t ) , . . . ,  Vn(t)]. By virtue of (1.6) 

L(t)* JL(t)  = J (2.1) 

i.e. L( t )  is a simplectic matrix. Suppose Sp(2n) is a set (group) of such matrices of order 2n; then 
L( t )  ~ Sp(2n) is a dosed curve (L(O) = L (T ) ) .  

Following the well-known approach [5, p. 360], we will show that by continuous deformation in the 
group Sp(2n) it may be contracted to the matrix L0 = [/0pq]~, the non-zero elements of which are 

l O p = l ,  p ~ n, 2n, 

/nOn = l°n, 2n = cos(2gkt / T), l°n.n = - l  °, 2n = sin(2nkt / T) 

(2.2) 

where k is a certain integer, which will also be called the index of system (1.1). 

In fact, since any non-zero vector is the first column of a certain matrix L ~ Sp(2n), then ul(t) may contract to 
the point (1, 0 . . . . .  0). Here the matrix L(t) is transformed into Ll(t), the elements of the (n + 1)th row of which, 

1 1 by virtue of (2.1), are ln+l n+l = 1, ln+l~ = 0, q # n + 1. Obviously, for this first column, the elements lq n+l, 
q # n + 1 may take any values in the group Sp(2n), and hence they may contract to zero. As a result, takingi2.1 ) 
into account we obtain l lq  ~ lql  = O, q > 1, lq. n+l = In+l. q m 0, q # n + 1 for the matrix L2(t); hence, the initial 
curve L(t) is confined in the cycle to the subgroup Sp(2n-2). Repeating this procedure n - 1 times, we find that 
the matrix obtained differs from L0 solely by the elements Inn(t), In. 2n(t), lz~. n(t) and 12n, n(t). Taking into account 
the fact that its determinant is equal to lnn(t)12n. 2n(t) - In. ~(t)l~.n(t) = 1, it can be shown that these elements contract 
to the form (2.2). 

Suppose Hi( t )  and H2(t) are strongly stable Hamiltonians with the same multiplier type, and kl and 
k2 are the corresponding indices. The following theorem is analogous to the Gel'fand-Lidskii theorem 
[1], but the proof given below is considerably simpler. 

Theorem 1. The Hamiltonians Hl( t  ) and H2(t ) belong to one region of stability if only kl = k2. 
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Proof. Suppose H(t, s) is a continuous stable curve, connecting the Hamiltonians Hi(t) and H2(t) 
(s • [0, 1], H(t, O) = Itl(t), H(t, 1) = H2(t)). The fundamental system of solutions (1.4) has the form 

X(t, s) =: F(t, s)E(t, s) 

F(t, s) =-" F(t + T, s) = [fp (t, s)]~", 

F(t,O) = Fl(t), F(t ,1)= F2(t), 

E(t, s) = diag[exp(itop (s)t], 

fp (t,s) = up(t,s)+ iv p(t,s) 

p = I ..... 2n 

(2.3) 

The matrix L(t, s) = [up(t, s), vp(t, s)]~ is continuous over s and converts Ll(t) = [u~(t), v~(t)]'[ into 
L2(t) = [u2(t), V2(t)]'l. It is obvious that for continuous deformation of the matrix L(t, s) its index 
k(s) is preserved, and hence k(0) = kl = k(1) = k2, which also proves the necessity of  the condition 
kl = k2. 

For the proof  it is sufficient to construct the required Hamiltonian H(t, s). As was shown above, when 
kl = k2 = k the matrices Ll(t) and L2(t) may be contracted into L0; consequently, a simpleetic matrix 
L(t, s) exists such that L(t, O) = L'(t), L(t, 1) = L2(t). The corresponding matrixF(t,  s) converts Fl(t) 
into F 2(0. 

Since, by the condition, the multiplier types of the Hamiltonians Hi(t) and H2(t) are the 
same, ¢0~ and to 2 can be connected by the curves top(s), (t~(0) = o~, t~(1) = t~ 2, e~,+n(S ) = -top(s)), 
so that 

exp(Rok(s)T) ~ exp(-itop(s)T), k ,p = 1 ..... n, s • [0,1] (2.4) 

For these F(t, s) and t0p(s) the matrix X(t, s), defined by (2.3), satisfies identity (1.2) (here C = 
2diag[In, -In]). Consequently, X(t, s) is the matrix of fundamental solutions of  system (1.1) with 
Hamiltonian H(t, s), defined by (1.3); it is obvious that H(t, O) = Hi(t), H(t, 1) = H2(t). The corresponding 
multipliers of  the first and second kind are: pp(s) = exp[itt~,(s)T] and pp+,,(s) = exp[-/o~,(s)T]; by virtue 
of (2.4) Eq. (1.1) is strongly stable when s • [0, 1]. Hence, the required Hamiltonian has been constructed, 
which completes the proof  of  the theorem. 

Note 1. For certain constraints on the matrix A(t) [2] the non-canonical system of order 2n 

~k = A(t)x, A(t) = A(t + T) (2.5) 

also has a reciprocal ch~xacteristic equation. For the strong stability of this system it is necessary and sufficient 
that all the multipliers should lie on the unit circle and be simple. The matrix of the system of fundamental solutions 
of Eq. (2.5) can also be., represented in the form (2.3), where F(t) is a non-singular matrix. The matrix L(t) 
corresponds to it, and, without loss of generality, we can take det L(t) = 1; then L(t) e SL(2n) where SL(2n) is a 
group of unimodular linear transformations. 

Using a procedure similar to that given above, the matrix L(t) can be deformed to the form L0 = 
diag[I2~_2, M], where/14 is a matrix with elements mix = m22 = cos(2nkt/T), m21 = --m12 = sin(2rda/T) 
and k is an integer. Hence, the stable matrices Hi(t) and H2(t) can be connected by a stable curve if 
only the corresponding numbers kl = k2. Hence, the stability regions of system (2.5) with reciprocal 
characteristic equation are also defined by the index k. 

3. D E T E R M I N A T I O N  OF T H E  I N D E X  

The procedure described above cannot, of course, be used to calculate the indexk. Some constructive 
determinations of the index were described in [1, 2]; they reduce to calculating the increment in [0, T] 
of  the argument of  a certain complex-valued function, expressed using the matrisant of Eq. (1.1). 

We will give a new definition of the index of the stability region. Consider the self-conjugate boundary- 
value problem 

J x  = [D+ X(H( t ) -  D)]x, x(0) = x(T) (3.1) 

where D = -2m'T-1I~,, and the integer r I> 0 is taken from the condition H(t) > D (to do this it is obviously 
necessary and sufficient that [~.(t) > -2m'T -1 when t • [0, T], where 13.(t) is the least eigenvalue of  the 
matrix H(t)). In particralar, i fH(t )  is a positive definite matrix, we can assume D ffi 0. 
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Since H(t) - D  > 0, the eigenvalues Z,1, L2 . . . .  o f  problem (3.1) are real  [2]. Suppose  N is the number  
of  eigenvalues in (0, 1]; we will call the quanti ty q = N/2 - rn the index of  the Hami l ton ian  H(t). This 
quanti ty is an even number  independen t  of  r. 

In fact, for integer r problem (3.1) has 2n zero eigenvalues ~.1 . . . . .  k2n = 0. It can be shown by the method of 
perturbations that d~,k/dr > 0, and hence when r increases continuously they shift to the interval (0, 1); they 
henceforth remain in it, since the number of eigenvalues ~. = 1 is independent ofr. Consequently, when r is increased 
by one the number N increases by 2n, and as a result the index does not change. 

We will show that N is even and therefore q is an integer. When ~. = 0 Eq. (3.1) has a 2n-tuple multiplier 
p = 1. Since H(t) - D > 0, as 3. increases the multipliers of the first kind move along the unit circle in opposite 
directions and can only converge after encountering multipliers of a different kind [4]. The values of~, for which 
Pk = 1 are the eigenvalues of problem (3.1). We will assume for simplicity that the multiplicity of this multiplier is 
2 for a l l ~  (this can be achieved by as small a perturbation of the Hamiltonian as desired, without affecting the 
value of N). If this pair of multipliers Pk and Pk+, = 1/Pk meet at the point p = 1, moving along the unit circle, the 
multiplicity q. of the corresponding eigenvalue ~ is equal to 2 or 1. In this first case, the multipliers continue moving 
along the circ"le, while in the second case they are shifted along the real axis [6]. If Pk and Pt+n meet at the point p 
= 1, moving along the real axis, then qp --- 1; these multipliers then move along the circle. As is well known, only 
four multipliers (Pk, P~, 1/pk and 1/p~ can fall on the positive semiaxis and coincide with it, passing the point 
p = 1. Taking these facts into account and bearing in mind that when 2~ = 1 there are no multipliers on the real axis 
(the corresponding Eq. (3.1) is strongly stable), we obtain that the number N of eigenvalues ~t in (0, 1) is even. 

We will show that the quantity q is equivalent to the above index k of the stability region, i.e. ql ;e q2 
when kl ~ k2 and ql = q2 when kl = k2. Suppose qx ¢ q2, H(t, s) is a continuous curve connecting Hamil- 
tonians Hi(t) and H2(t). As was shown above, an increase in the number  r does not  change the index, and 
hence we can assume that H(t, s) > D when s • [0, 1]. Taking into account the continuity of  the eigenvalues 
~ ( s )  and the inequality N1 ~ N2, we obtain that (ql ~ q2) for  certain k and ~ ( s )  = 1. The  corresponding 
Eq. (1.1) has an indefinite multiplier p = 1 and is therefore not strongly stable. Hence ,  when ql ~ q2 the 
Hamiltonians Hi( t )  and H2(t) cannot  be connected by the stable curve H(t, s); consequently,  kl ¢ k2. 
Conversely, if kl = k2, such a curve exists; since the corresponding values kk(S) ~ 1 when s • [0, 1], we 
have ql -- q2. Hence,  the quantities q and k are equivalent (besides, it is easy to show that they are equal). 

The  number  of  non-zero eigenvalues is independent  of  H(t),  and hence when the Hamil tonian changes 
the eigenvalues may fall in the interval (0, 1) and can only leave it through the point  ~, = 1. Consequently,  
if with this change Lk ;~ 1, the index stays the same. 

Note  that  the value of  N is equal  to the number  of  zeros L k in (0, 1) o f  the real  funct ion 
det[X(T, ~,) - I2n] = 0, where  X(T,  ~,) is any matrix of  the fundamenta l  solutions of  Eq. (3.1). Hence ,  
the index q can be calculated somewhat  more  simply than the known indices in every  case when  
H(t) > 0. For  our  subsequent  analysis, however,  it is essential, when using this index, to be able to 
establish certain proper t ies  of  the stability regions. 

Note 2. In practice one often encounters systems described by the Hill vector equation 

(M(t)y) +C(t)y =0, y~  R n (3.2) 

where M(t) and C(t) are symmetric T-periodic matrices, where M(t) > 0. As is well known, Eq. (3.2) can be reduced 
1 to the form (1.1) with H = Ho(t) = diag(M- (t), C(t)). Suppose x(t + T) = 9x(t) is the solution of Eq. (3.2) and 

I P I = 1; then 
T T 

I (H0x, x)dt = 2 I ( M i , x ) d t -  (M~t,x)I T (3.3) 
0 0 

Since [ p I = 1, the term outside the integral is equal to zero; consequently, the left-hand side of (3.3) is positive 
(M(t) > 0). Hence, the above discussion holds when D = 0. Hence, when calculating the index of system (3.2) we 
can take D = 0 in (3.1), even in the matrix C(t) and, consequently, Ho(t) is not positive definite. 

4. D I R E C T I O N A L  C O N V E X I T Y  O F  T H E  S T A B I L I T Y  R E G I O N S  

The  stability region [2k is said to be directionally convex [4], if it follows f rom the condit ions 
Hi ( t )  e f~k and Hi(t) <- H2(t) • flk that  any Hamil tonian  H(t) satisfying the inequali ty 

Hi(t) <~ H(t) <~ H2(t) (4.1) 

also belongs to this region. 
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The directional convexity of  the stability regions of Eq. (1.1) was established in [7] for certain 
conditions with respect to the alternation of multipliers of a different kind (these conditions are satisfied 
when n = 1 and n = 2, in particular). The following theorem shows that the property of  directional 
convexity in general. 

Theorem 2. The stability regions of Eq. (1.1) are directionally convex. 

Proof. We will put H(t, s) = Hi(t) + s(H2(t) - Hi(t)). We will first show that H(t, s) ~ D~ when s 
[0, 1]. In view of (4.1) 1t(t, s) increases (does not decrease) with respect to s, and hence the corresponding 
eigenvalue Xk(S) of problem (3.1) decrease [4]. Since ql = q2(Hl(t), H2(t) ~ t2k), we have ~,k(S) ~ 1 and 
consequently pq(S) # 1 when s ~ [0, 1], q = 1 . . . . .  2n. 

We will agree to define sets of multipliers of each kind, apart from a permutation of  their indices. 
Suppose Pk(0) and pp(0) are adjacent to multipliers of the first and second kind, respectively, where 
arg Pk(0) < arg pp(0) (0 < arg pq(0) < 2n). When s increases the multipliers pk(s) and pp(s) move along 
the unit circle in opposite directions to one another; we will assume that they meet w-hen s = s" < 1. 
Without loss of generality we will assume that the multiplicity of this multiplier is two (as noted above, 
this can be achieved fi)r as small a perturbation of H(t, s) as desired). If the corresponding elementary 
dividers of the matrix are monodromic non-prime, then when s increases further these multipliers 
converge with the unit circle [4]. As we know, only four multipliers can simultaneously converge and 
fall in the unit circle, with the exception of the point p = 1 and p -- -1. For s = 1 Eq. (1.1) is stable, 
and hence, taking into account the condition assumed above regarding the indices of multipliers of the 
first kind we can assmne that pk(s) and pp(S) for certain s = s" ~ 1 again meet on the same semicircle 
or (if pk(S') = pp(s') = -1) at the point p = -1 and then continue to move along it in the same directions. 
If when s = s' these elementary dividers are prime, pk(S) and pp(s) continue to move around the circle 
[4]. In both cases the relative position of  these multipliers on the arc (0, 2n) of the circle when s = 0 
and s = 1 is different (arg Pk(0) < arg pp(0), arg pk(1) > arg p.(1)). 

Using similar discussions we find that if when s e [0, 1) severa~encounters of multipliers of a different 
kind occur on the unit: circle, the relative position of each such pair on the circle changes as indicated 
above. As a result, the multiplier types of the Hamiltonians H(t, 0) and H(t, 1) are different. We can 
convince ourselves of this by considering the function ¥(k)---the difference between the number of  
multipliers of the first and second kind in the set of the first k multipliers (k = 1 . . . .  ,2n)  (in order of  
increasing argument). As can be seen, for the change indicated above in the relative position of 
multipliers of a different kind w(k) decreases for certain k. Nevertheless, ¥1(k) = ¥2(k), since the 
multiplier types of Hamiltonians Hi(t)  and H2(t) are the same. The contradiction obtained shows that 
multipliers of a different kind are not encountered as s increases in the interval [0, 1]. 

We will now assume that Eq. (1.1) with Hamiltonian H(t), which satisfies inequality (4.1), is unstable. 
We will put H(t, s) = 1110) + s(H(t) - Hi(t)), in which case, for certain s ~< 1, multipliers of a different 
kind pk(s) and pp(s) occur on the unit circle. As shown above, when H = H2(t ) the inequality arg pk(S) 
< arg pp(S) is satisfied for such multipliers when s e [0, 1]. Consequently, in the case considered some 
of the multipliers pk(s) and pp(s) must traverse a point p. of the unit circle such that 

argpt(1) < argp. < argpp(l) 

Supposex.(t ,  s.) is the corresponding solution of (x.(t + T, s.) = p.x,(t, s.), s. < 1). 
We will consider the boundary-value problem 

(4.2) 

J x  = [H I ( t)+ L(R( t ) -  Hl(t))]x, x(T) = p.x(0) (4.3) 

When R = H(t, s.) and ~, = 1, Eq. (4.3) has a solution x,(t, s.) and hence ~. = 1 is an eigenvalue. 
Since H2(t) I> H(t) 2: H(t, s.), problem (4.3) must have an eigenvalue Lk ~< 1 when R = Hz(t). 
Nevertheless, by virtue of (4.2) when ~. increases in the range [0, 1], the multipliers of  Eq. (4.3) do not 
fall on the point po; hence, there are no eigenvalues in [0, 1]. The contradiction obtained shows that 
in system (1.1) with Hamiltonian H(t, s) multipliers of a different kind do not occur as s increases in 
the interval [0, 1]; consequently, H(t, 1) = H(t) ~ t2k. The theorem is proved. 

The practical value of this theorem is as follows. In practice, the Hamiltonian H(t) usually depends 
on certain parameters (H = H(t, ~1 . . . . .  ~ ) ) ;  the problem consists of finding regions in the space of 
these parameters which correspond to strong system stability. Numerical and analytic methods have been 
developed to solve this (see, for example, [2, 8, 9]). The majority of these enable one to find critical 
values of  the parameters corresponding to the boundaries of the stability regions (i.e. coincidence of 
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multipliers of a different kind on the unit circle). In particular, the boundaries of the so-called fundamental 
stability regions (corresponding to the presence of an indefinite multiplier P = 1 or 13 = -1)  are determined 
from the condition for T-periodic or T-antiperiodie solutions (x(t + T) = -x(t) to exist in the system, 
which leads to an equation in the required values of the parameters [8]. With this approach it still remains 
an open question whether the whole region bounded by the values of the parameters obtained 
corresponds to strong stability. Theorem 2 enables us to assert that if the Hamiltonian H(t, IX1 . . . .  , ~ )  
increases with respect to a certain parameter ~tq, the stability regions D~ in the space of the parameters 
IJ.1 . . . . .  ~lp are convex with respect to I.tq; hence, in this case the answer to the question is in the affi_rmative, 
which makes additional calculations unnecessary. The same conclusion obviously holds ifH(t, it1, . . . .  ~ )  
increases with respect to ttq (it is sufficient to change to a new parameter -lXq). 

In problems of parametric oscillations and the dynamic stability of linear systems, the Hamiltonian, 
as a rule, can be represented in the form H ( ~ ,  e), where to and e are the frequency and intensity of 
the parametric excitation, in the plane of which the stability regions are also constructed. Here usually 
H(tot + 2n, e) = H ( ~ ,  e) > 0, H(tot, 0) = H0 is a constant Hamiltonian. Assuming x = tot, we can write 
Eq. (1.1) in the form 

Jx" = H(x, E, to)x (4.4) 

H(x,e, to)=H(x,e) / to ,  H(x+2n,  e)=H(x,e) ,  x ' = d x / d x  

Since H0 > 0 the matrix J - IH 0 has pure imaginary eigenvalues +_.ito ° (k = 1 . . . . .  n), where 
(Ok ° are the frequencies of free oscillations of the system when e = 0. Sections separated by the points 
t~k = (to o + t~Ok)/m (p, k = L02 . . . .  , n; m = 1, 2 . . . )  correspond to stability regions of system (4.4) 
on the to axis. When t t~  = to ~/m Eq. (4.4) has a multiplier p = 1, and hence, from the definition of 
the index given above, it follows that these points on the to axis distinguish stability regions with different 
indices; the remaining points topk distinguish stability regions which differ solely in the multiplier types. 

As can be seen from (4.4) H(x, e, to) decreases with respect to to (H(x, e) > 0. Hence, the following 
assertion follows from Theorem 2. 

Corollary. The stability regions of system (1.1) when H ( ~ ,  e) > 0 are convex with respect to to. 
Hence, by calculating the upper and lower limits to~(e) and to~(e) of stability region f2k, one can be 

sure that the system is stable when co e (to~(e), to~(e)). Note that this result was established for small 
e in [9] by the perturbation method. 

Note 3. When investigating parametric oscillations in a system described by Hill's vector equation, the latter can 
usually be written in the form 

[M(tot, e)~k]" + C(tot,E)x = 0 (4.5) 

M(tot,e) = M(tot + 2n, e) = M 0 +f.M I (tot), C(tot,e) = C(tot + 2n,e)  = C O + e C  1 (tot) 

As  shown above, when M(tot, e) > 0 for the corresponding Hamil tonian the left-hand side of  (3.3) is positive 
even ff the matrix C(tot, ~) is not positive definite. Hence, the stability regions here are convex with respect to to. 
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